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Abstract—The accuracy of location information, mainly pro-
vided by the global positioning system (GPS) sensor, is critical 
for Internet-of-Things applications in smart cities. However, 
built environments attenuate GPS signals by reflecting or block-
ing them resulting in some cases multipath and non-line-of-
sight (NLOS) reception. These effects cause range errors that 
degrade GPS positioning accuracy. Enhancements in the design of 
antennae and receivers deliver a level of reduction of multipath. 
However, NLOS signal reception and residual effects of multipath 
are still to be mitigated sufficiently for improvements in range 
errors and positioning accuracy. Recent machine learning-based 
methods have shown promise in improving pseudorange-based 
position solutions by considering multiple variables from raw 
GPS measurements. However, positioning accuracy is limited by 
low accuracy signal reception classification. Unlike the existing 
methods, which use machine learning to directly predict the sig-
nal reception classification, we use a gradient boosting decision 
tree (GBDT)-based method to predict the pseudorange errors by 
considering the signal strength, satellite elevation angle and pseu-
dorange residuals. With the predicted pseudorange errors, two 
variations of the algorithm are proposed to improve positioning 
accuracy. The first corrects pseudorange errors and the other 
either corrects or excludes the signals determined to contain the 
effects of multipath and NLOS signals. The results for a chal-
lenging urban environment characterized by high-rise buildings 
on one side, show that the 3-D positioning accuracy of the pseu-
dorange error correction-based positioning measured in terms of 
the root mean square error is 23.3 m, an improvement of more 
than 70% over the conventional methods.
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I. INTRODUCTION

GLOBAL navigation satellite systems (GNSSs) such as
global positioning system (GPS), are used widely for

positioning, navigation and timing (PNT). GPS is a key tech-
nology that provides positioning information and therefore,
critical for Internet-of-Things (IoT) applications in urban envi-
ronments. However, in such environments satellite signals are
prone to reflection, diffraction and blockage by proximate
obstacles resulting in multipath and non-line-of-sight (NLOS)
reception. Multipath occurs when both the direct (referred
to as line-of-sight or LOS) and reflected signals are present
in the receiver. NLOS on the other hand occurs when only
the reflected signal is present at the receiver. The effects of
Multipath and NLOS can result in pseudorange errors tens
of metres in magnitude, inhibiting the use of GPS for some
location-based services in urban areas. To date these effects
are largely mitigated through design (receiver and antenna),
signal processing and modeling in the measurement domain.

Antenna design methods, such as the choke-ring antenna
and the dual-polarisation one, are effective in mitigating
multipath effects at low elevation angles [1], [2]. However,
they are bulky and expensive inhibiting their widespread use.
Van Dierendonck [3] proposed the signal processing-based
method employing the correlation technique by reducing the
space between early and late receiver code correlators [3].
This was followed by approaches including the multipath
estimating delay lock loop (MEDLL), and vision and strobe
correlators [4]–[9]. These signal processing-based methods are
able to mitigate the multipath effect of middle/long range
multipath signal. However, they are invalid for short range
multipath signals. Besides, there is no single method for the
mitigation of both NLOS and multipath effects.

The methods employed in the measurement domain
employ measurements and derivatives, and satellite and
signal information to ameliorate the effects of NLOS recep-
tion and multipath. Utilizing dual-frequency observations,
code-minus-carrier measurements (CMCs) can be obtained
to estimate code multipath error and evaluate multipath
conditions when carrier-phase and code-phase measurements
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are available [10], [11]. The use GPS measurements together
with data from additional sensors, such as inertial measure-
ment units (IMUs) and vision sensors, has been shown to
enhance the accuracy of positioning in urban canyons [12]–[17].
Although GNSS/IMU integration is effective with high grade
IMU sensors, their high cost precludes their widespread use.
The integration with visual sensors is also affected by high cost
and weather conditions. Apart from sensor integration, recent
research has also looked at the use of spatial information
(e.g., 3-D city models) to mitigate the effects of multipath and
NLOS. Groves developed the shadow matching technique, in
which the 3-D city model is used to assist the detection of
NLOS reception and then to improve positioning accuracy [18].
Shadow matching is effective in reducing the cross-street posi-
tioning error by 77.5%, i.e., from 14.8 m with the conventional
solution to just 3.3 m, but is not able to improve positioning
accuracy in along street direction [19]. Furthermore, an opti-
mised user position can be calculated based on the weighted
average of the estimated candidate positions obtained from
a comparison of the simulated and measured pseudoranges
based on the 3-D city model [20]–[22]. However, the accuracy
of positioning aided by 3-D city model depends on the qual-
ity and integrity of model [23]. Although these methods can
improve positioning accuracy by reducing the errors caused
from NLOS or multipath to a certain extent, as shown there
are open issues still to be resolved.

The quality of a signal received depends to a large extent on
the physical environment proximate to the antenna. The impact
or effect of such an environment on signal reception can occur
in one of three ways: 1) LOS; 2) NLOS; and 3) multipath, with
the last two traditionally known to have a discernible effect
on the carrier to noise ratio (C/N0) of the signal compared to
that of LOS. Hence, the approach taken is to specify a thresh-
old for C/N0. (i.e., a higher C/N0 for LOS signals and lower
for NLOS signals). Although it has been demonstrated that
C/N0 is an effective classifier in the absence of interference,
in practice there are circumstances of detection of LOS sig-
nals at low C/N0 and NLOS signals at high C/N0. Therefore,
single variable (e.g., C/N0) methods tend to be suboptimal
especially in complex physical environments [24]. This calls
for the consideration of other variables.

In addition to C/N0, other variables such as satellite ele-
vation angle, pseudorange residuals and the other derivatives
could also be used to classify pseudorange measurements in
terms of quality. Deng [25] used satellite elevation angle and
geometric dilution of precision (GDOP) to select the satel-
lites to use. Wang et al. [26] identified LOS signals using
C/N0 and satellite elevation. Hsu et al. [27] showed that the
pseudorange residual could be used as an indicator to exclude
multipath and NLOS signals if the number of measurements
is sufficient. Horizontal and vertical dilutions of precision
(HDOP and VDOP, respectively), and pseudorange change
rate [24], [28] are the other possible variables.

Traditionally, linear and nonlinear regression are employed
to determine the model parameters for observation equa-
tions linking the pseudorange error to the multiple
variables [29], [30]. Emerging recently is the application of
machine learning for modelling and mitigating pseduorange

errors. Research has shown that it has a great potential to
improve GNSS positioning accuracy by considering various
complementary variables that influence measurement error.
Phan et al. use two variables (elevation and azimuth angles)
with a support vector machine (SVM) machine learning model
to mitigate the effect of multipath in static applications [31].
By using the labeling results from a camera and compass,
Yozevitch et al. [24] proposed a decision tree-based approach
to classify the LOS and NLOS with the C/N0, elevation angle
and pseudorange variables as the algorithm inputs. Hsu [28]
used C/N0, rate of change of C/N0, pseudorange residu-
als and pseudorange consistency with an SVM to classify
the received signal types. Labeling of the type of signal
reception is through the use of a 3-D city model together
with ray-tracing. Socharoentum et al. used four machine
learning methods (logistic regression, SVM, Naïve Bayes,
and decision tree) to detect NLOS signals. They employed
a number of inputs, including satellite visibility, position dilu-
tion of precision (PDOP), pseudorange corrections and other
related variables [32]. The accuracy of the predicted signal
reception types is compared in the simulation. Quan et al.
proposed a convolutional neural network (CNN) method to
detect multipath, applying the sparse autoencoder (SAE) for
feature extraction. An improvement in positioning accuracy
ranging from 18% to 30% was achieved by down-weighting
the measurement identified as affected by multipath [33].
Guermaha et al. [34] proposed a decision tree-based GNSS
signal classifier using satellite elevation and the difference
in C/N0 from a right-hand circular polarized (RHCP) and
left-hand circular polarized (LHCP) antennae. Sun et al. [35]
used nine variables together with principle component analy-
sis (PCA) and artificial neuro fuzzy inference system (ANFIS)
to classify LOS, multipath, and NLOS signals. The nine vari-
ables are HDOP, PDOP, azimuth angle, satellite elevation
angle, number of visible satellites, C/N0, changes in C/N0
over time, pseudorange residual, and consistency between
delta pseudorange and pseudorange rate [35]. The subsequent
research builds on this in an attempt to reduce the number
of variables, ultimately applying just the three most repre-
sentative variables, satellite elevation angle, C/N0 and pseu-
dorange residuals together with a gradient boosting decision
tree (GBDT) model to predict the received signal’s classifi-
cation type before computing the resulting position solutions
by excluding the NLOS signals. Although an improvement
in positioning accuracy is observed in places, the effect of
exclusion on geometry, overall, results in only a marginal
improvement in accuracy [36].

It is notable that all of the current methods using machine
learning are for the classification of the received signals [24],
which is a significant factor in the accuracy of position-
ing using the signals [31]–[36]. However, the classification
accuracy is affected by the errors introduced from the other
information sources used in the offline labeling phase of the
machine learning algorithms (e.g., 3-D city model, camera or
compass etc.) [24], [28], [35]. For example, the accuracy of
labeling with a camera or compass often depends on the cost
(and thus quality) of the hardware. Using the 3-D city model in
the offline labeling phase also has some weaknesses, including:



Fig. 1. Framework of the GBDT-based GPS code phase positioning algorithm.

1) the need for significant computational resources for storage,
updating and offline processing and 2) the difficulty of gen-
erating accurate building borders for some special building
shapes. The error introduced by using 3-D city models, cam-
eras, compasses or other sensors in the labeling process for
signal reception classification inevitably results in final posi-
tioning errors. The key issue for positioning accuracy however,
is whether the pseudorange is correctly measured. If we could
design a robust algorithm to obtain the pseudorange error mea-
sured from each observed satellite, it would potentially be
possible to achieve a high accuracy positioning solution based
on error corrections.

Building on the above, we have developed a novel GPS
pseudorange algorithm to improve positioning accuracy in
urban environments. It employs satellite elevation angle, signal
strength and pseudorange residuals as the algorithm’s inputs.
Unlike the traditional methods, we use GBDT to predict
the pseudorange errors. Based on the predicted pseudorange
errors, two variations of the algorithm for the positioning are
proposed. The first variation is based on the pseudorange error
correction while the second is based on the multipath/NLOS
exclusion or correction. The proposed positioning method
could avoid the errors and costs arising from additional hard-
ware or geospatial information during the labeling phase, and
therefore, addresses the limitations of current signal recep-
tion classification-based positioning approaches using machine
learning. The contributions of our research are summarized as
follows.

1) Development of a new GBDT-based pseudorange error
prediction model using satellite elevation angle, C/N0
and pseudorange residuals as the input variables. This
model is in turn used to improve positioning accuracy
by applying the predicted corrections to pseudorange
measurements before computing the position solutions.

2) Development of a variation to the model above, by
using the predicted pseudorange errors and a threshold
to detect and exclude (where the geometric configu-
ration allows) multipath/NLOS affected signals, before
computing the position solution with a higher accuracy.

Based on static field tests in urban areas we demonstrate
that the proposed approaches are superior to the conven-
tional code phase-based positioning results. Using the scenario
of challenging urban areas with high rise buildings on one
side as an example, for the first model (application of the
predicted pseudorange error as a correction), the 3-D posi-
tioning accuracy (RMSE) is enhanced to 23.3 m from about
80 m, an improvement of more than 70%. For the second
variation (detection and exclusion), the 3-D positioning accu-
racy (RMSE) is improved to 60.8 m from about 80 m, an
improvement of about 25%.

II. ALGORITHM FRAMEWORK

A. Algorithm Framework

The framework of the proposed GBDT-based GPS code
phase positioning algorithm is presented in Fig. 1. The



proposed GBDT-based machine learning algorithm includes
a training phase conducted offline and a testing phase con-
ducted online.

In the offline phase, the data used are GPS raw pseudor-
anges collected from a known point in an urban canyon and
a reference (known) station. Some of the data from the known
location in the urban canyon contain multipath and NLOS
effects resulting in relatively large pseudorange errors. These
errors are computed from the difference between the raw pseu-
doranges and the corresponding geometric ranges from the
known station coordinates and satellite ephemeris. The raw
data from the reference station are not affected by multipath
and NLOS, resulting in relatively low pseudorange errors, as
determined from the difference between the raw pseudoranges
and the corresponding geometric ranges.

Every set of variables at each epoch (satellite elevation
angle, C/N0 and pseudorange residual) is then mapped to,
or labeled with, the corresponding pseudorange error. The
GBDT algorithm is then used to fit the calculated pseudo-
range error by means of an offline data set training process,
thereby obtaining the rules, that is, the relationship between the
input variables (elevation angle, C/N0, pseudorange residuals)
and the corresponding labeled pseudorange errors. The main
parts of the offline training process, including variable selec-
tion, details on the labeling process and GBDT-based training
process are discussed further in the subsequent sections.

In the online phase, new GPS variables from raw measure-
ments in urban canyons, including elevation angle, C/N0 and
pseudorange, are used together with the rules extracted from
the offline phase to predict the pseudorange errors. Based on
the predicted pseudorange errors, two variations of positioning
algorithm are proposed: 1) positioning solutions based on the
application of the predicted pseudorange errors as corrections
to the new raw pseudoranges and 2) the predicted pseudo-
range errors are compared with a threshold value to obtain
the signal reception type classification, and a geometry allow-
ing position solution based on exclusion or correction of the
multipath/NLOS signals in the positioning solutions.

B. Determination of Input Variables

The received GPS signal contains a variety of variables that
can be used to determine the pseudorange error. Although,
using more variables should improve the accuracy of the train-
ing, this is at the cost of computational efficiency. Based
on computational cost and training accuracy from previous
research by the authors [35], [36], we adopt the three repre-
sentative variables, satellite elevation θ , C/N0 and pseudorange
residuals η for pseudorange error prediction.

1) Carrier to Noise Ratio, C/N0: The ratio of carrier power
to noise power per unit of bandwidth in decibel-hertz
(dB-Hz). Under the same noise power, the C/N0 of a sig-
nal with large pseudorange errors (i.e., multipath/NLOS)
is lower than that with small pseudorange errors (i.e.,
LOS). C/N0 is the most commonly used indicator of
pseudorage errors.

2) Pseudorange Residuals, η: The inconsistency between
the pseudorange measurements and the solution. It is

determined from the following equation:

η = G�x − b (1)

where G is the design matrix. b is the difference
between observed and computed pseudoranges. �x is
the corrections applied to the approximate values of
unknown position and time to determine the final posi-
tion and time. The solution for �x for the unweighted
measurements in the least-squares process is expressed

�x = (GTG)−1GTb. (2)

Research has shown that given sufficient measurements,
the variable pseudorange residual could be used to
detect the effects of multipath/NLOS [36]. The pseu-
dorange residual is therefore, a feasible variable for the
pseudorange error prediction.

3) Satellite Elevation, θ : The higher the satellite elevation
angle, the lower the probability of a satellite signal being
reflected or blocked by the physical environment proxi-
mate to the receiver antenna, resulting in low multipath
and NLOS effects

θ(i) = −arcsin
(

u(i)
D

)
. (3)

Weighting the measurements based on the elevation angle
to reduce the multipath effect is widely used in positioning
computation [37]. Therefore, satellite elevation angle is also
used for the pseudorange error prediction.

C. Labeling Process

The labeling of the pseudorange error is critical in the offline
training process. The ranging errors result from the fact that
the contaminated signal (i.e., multipath or NLOS) travels an
additional route due to being reflected in the surrounding envi-
ronment. Typically, in urban canyons, the error can be a few
tens of metres. However, larger errors can result if a signal is
reflected by a remote tall building. Once the ground truth is
known, the pseudorange errors of the received signals can be
calculated and labeled with their values. The observed pseudo-
range ρ between the receiver and a satellite can be expressed
in (4) and (5) as follows:

ρ = R + c
(
δtr − δtsv) + I + T + ε (4)

R =
√

(xsv − xr)2 + (ysv − yr)2 + (zsv − zr)2 (5)

where R is the geometric range between the observed satellite
and the receiver; (xsv, ysv, zsv) and (xr, yr, zr) are the coordi-
nates of the satellite and receiver in an earth centred earth
fixed (ECEF) system; c is the velocity of light in vacuo;
δtsv is the satellite clock offset; δtr is the receiver clock off-
set; I is the ionospheric delay; T is the tropospheric delay;
ε the errors due to the effects of multipath/NLOS, receiver
noise, and antenna delay. The error caused of by the effects
of multipath/NLOS dominate ε, since the other errors are
relatively small and negligible.

Considering the error sources of the observed pseudorange
ρ, and the actual (known) receiver position, the corrected pseu-
dorange ρc, with the related error model applied, could be



expressed as

ρc = R + c
(
�δtr − �δtsv) + �I + �T + ε (6)

where the geometric range R can be calculated based on the
known position of the receiver and the position of the observed
satellite from the broadcast ephemeris; c is the velocity of
light in a vacuum; �δtr is the residual of the receiver clock
offset after applying the calculated receiver clock error from
the pseudorange positioning equations with the known ground
truth; �δtsv is the residual of the satellite clock offset after
applying the satellite clock offset obtained from the broad-
cast ephemeris; �I + �T are the residuals (i.e., noncorrected
parts) of the ionospheric and tropospheric delay errors after
the corrections from the Klobuchar and Saastamoinen models.
ε is the error mainly sourced from multipath/NLOS. With the
corrected pseudorange ρc from (6), the pseudorange error �ρ

can be derived by

�ρ = ρc − R = c
(
�δtr − �δtsv) + �I + �T + ε. (7)

The calculated results of the pseudorange error �ρ could
then be labeled as the corresponding value from (7). Through
the above we can obtain the corresponding pseudorange error
�ρ for every set of variables from the GPS measurement,
containing satellite elevation θ , carrier to noise ratio C/N0 and
pseudorange residuals η in the offline labeling phase.

D. GBDT-Based Training Process

The performance of machine learning is vital for the
prediction of pseudorange error and hence the final positioning
accuracy. The decision tree, also referred to as classification
or regression tree is a popular machine learning method [38].
Nevertheless, the single decision tree can be unstable affected
adversely by small uncertainties and perturbations in the train-
ing data sets [39]. One way of improving performance is to
use a combination or ensemble of techniques through the
accumulation individual learning results. Here, one ensemble
decision tree algorithm, GBDT, able to minimize the decision
tree training error based on the gradient boosting regression
technique, is used for the pseudorange error prediction [40].
The problem can be defined as: Given a training sample
{xi,�ρi}N

1 of known (x,�ρ) values, the objective is to deter-
mine a function that maps x to �ρ, such that over the joint
distribution of all (x,�ρ) values, the expected value of some
specified loss function L(�ρi, f (xi)) is minimised. In particu-
lar, xi = (C/N0i, ηi, θi), i = 1, 2, 3, . . . , N. i is the sequence
number of the sample and N is the total number of the sam-
ples. �ρi is the corresponding labeled pseudorange error of
xi. The GBDT-based pseudorange error prediction algorithm
process is as follows.

1) Initiate predictions with a simple decision tree f0(x)

f0(x) = argmin
γ

N∑
i=1

L
(
�ρi, γ

)
(8)

where f0(x) is a regression decision tree containing
only one root node and γ is a constant value which
is the output of f0(x). In order to ensure that the loss
function L(�ρi, f (xi)) decreases in each iteration, the

weak learner hm(xi; am)m = 1, . . . , M, is created in
the direction of steepest descent (i.e., a negative gra-
dient direction). m is the sequence number of iterations.
hm(xi; am) is a decision tree with the parameter a,
which determines the splitting variable, split locations
and terminal node of the individual tree.

2) For m = 1, . . . , M:
a) compute the negative gradient in the following

equation:

ỹi = −
[

∂L
(
�ρi, f (xi)

)

∂f (xi)

]

f (x)=fm−1(x)

(9)

where the loss function L(�ρi, f (xi)) is the square
loss function (1/2)(�ρi − f (xi))

2 used in the
iteration;

b) create a new data set based on replacing �ρi in
the training data set by ỹi. The new data set is
expressed as

Tm = {(x1, ỹ1), (x2, ỹ2), . . . , (xi, ỹi), . . . , (xN, ỹN)}
(10)

a new weak predictor hm(xi; am) is created in the
following equation by training of the new data set
Tm to minimize the loss function

am = argmin
a

N∑
i=1

(ỹi − hm(xi; a))2 (11)

c) update the original predictor with the new predictor
multiplied by learning rate β to form a stronger
predictor fm(x) in the following equation:

fm(x) = fm−1(x) + βhm(x; am) (12)

where β is usually chosen to be a value between
0 ∼ 1 in order to prevent over-fitting. hm(x; am)

is the weak predictor and fm−1(x) is the strong
predictor from the previous iteration.

3) Output fM(x) as the final predictor after the iteration
termination

fM(x) = f0(x) +
M∑

m=1

βhm(x; am). (13)

4) Once the final predictor fM(x) (i.e., the rules of the
GBDT method) is obtained, the corresponding pseu-
dorange errors of the newly collected variables from
GPS measurement can be predicted. The input x =
(C/N0, η, θ) is used together with the rules to predict
the pseudorange errors for each observed satellite.

E. Positioning Calculation With Two Variations

The testing data set is used together with the pseudorange
errors predicted by GBDT to compute the position with the
two proposed variations for accuracy improvement.

1) Positioning Based on Pseudorange Error Correction:
The newly collected pseudorange measurements can



Fig. 2. Positioning based on multipath/NLOS signal exclusion.

be corrected by subtracting the predicted pseudorange
errors in the following equation:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ρc
1 = ρ1 − �̃ρ1

ρc
2 = ρ2 − �̃ρ2

...

ρc
i = ρi − �̃ρi

(14)

where ρc
i is the corrected pseudorange of the ith sig-

nals, and �̃ρi is the predicted pseudorange error of the
ith signals. With the corrected pseudorange measure-
ments, a least-squares algorithm is used for position
computation.

2) Positioning Based on Multipath/NLOS Signal Exclusion
or Correction: The process for the positioning based on
multipath/NLOS signal exclusion or correction is illus-
trated in Fig. 2. The predicted pseudorange errors are
used to classify multipath/ NLOS signals by comparing
their absolute values with a proposed threshold p, see
Fig. 2. From the results of field trials, NLOS signals can
have an unbounded positive pseudorange error, while
the multipath has a bounded positive or negative psudo-
range error depending on the signal processing method
in the receiver design. The LOS measurement could also
have small pseudorange errors due to the residual error
terms, including the clock offset �δtr, satellite clock off-
set �δtsv, ionospheric delay �I and tropospheric delay
�T , as introduced in (7). The threshold p is therefore
determined empirically from field trials.

The candidate pseudorange with the predicted absolute
pseudorange errors ˜|�ρi| within the threshold p is considered
as a LOS signal and can be used for the final position-
ing. The candidate pseudorange with ˜|�ρi| greater than the
threshold p is classified as the multipath/NLOS. Nevertheless,
we do not remove all of the multipath/NLOS signals since

Fig. 3. Experiment procedure.

satellite exclusions could degrade the satellite geometry and
therefore, affect the final positioning accuracy. The value of
the reference PDOP is calculated for all visible satellites in
every epoch. At the same time, the candidate PDOPs are
calculated for each time excluding one pseudorange. The
following conditional strategies are then carried out: if the
removal of a pseudorange causes the PDOP to increase,
we will correct the pseudorange error following the pro-
cess in (14) and then use the corrected pseudorange for
the final positioning. Alternatively, if the removal of the
pseudorange does not cause the PDOP to increase, we will
exclude this pseudorange measurement in the final position
computation.

III. FIELD TEST AND ANALYSIS OF RESULTS

The field tests were carried out to validate the proposed
algorithms. The two experiments followed the same proce-
dure, with the data being collected on separate occasions in
different urban environments, as shown in Fig. 3. The data
set D0 consists of data collected from an urban canyon and
a reference station. The urban canyon data sets mainly con-
sist of NLOS and multipath signals, and, therefore, generally
have large pseudorange errors. The reference station data sets
mainly contain LOS signals and have relatively small pseu-
dorange errors. In order to prevent a biased fitting, samples
were extracted from the two parts of the data set (i.e., urban
canyon and reference station) to form the training data set D1.
The rules extracted from the training process were then used to
predict pseudorange errors for the testing data set D2. The pre-
dicted pseudorange errors are used with the two variations of
the proposed algorithm, that is: 1) correction-based positioning
and 2) multipath/NLOS signals exclusion or correction-based
positioning.



TABLE I
SUMMARY OF THE DATA SETS IN TEST CASE 1

A. Test Case With Narrow Road and Buildings on Two Sides

The test case 1 was carried out on a typical urban canyon
area with a narrow road and buildings on two sides. Static
data at 1 Hz were collected at a point, P0, on a nar-
row road with buildings on two sides in the campus of
Cheng Kung University using a commercial GPS receiver,
NovAtel Propak 7, for about seven hours on September
17, 2018. In addition, on the same day, seven hours of static
data at an interval of 30 s were collected at the reference sta-
tion CKSV, located in Cheng Kung University using a geodetic
receiver, Trimble NETR9.

The same number of samples were randomly selected from
the large pseudorange errors (i.e., 24 000 samples from the
urban canyon) and small pseudorange errors (i.e., 12 000 sam-
ples from urban canyon and 12 000 from reference station)
to form the training data set D1. Another seven hours of
data were also collected at 1 Hz at the same urban point, P0,
from which 97 097 samples were selected to form the testing
data set D2, see Table I.

During the training process, the GBDT was used to fit the
pseudorange errors of data set D1. The rules extracted from
the training data set D1 were used to predict the pseudorange
errors of D2. Internal validation of the training process was
based on the determination of the goodness of fit of the rules
generated. While external validation, also known as testing,
was undertaken using a separate data set, D2, in order to val-
idate the correctness of the fitting results for the predicted
pseudorange errors. The RMSE of the fitting results was used
to evaluate the accuracy of the internal and external validation.
The smaller the RMSE, the closer the fitting result is to the
reference pseudorange errors.

A sensitivity analysis was performed to reveal the variation
of the training accuracy of GBDT with the number of itera-
tions for different parameters, see Fig. 4. The parameters used
to evaluate the performance included the leaf number (LN),
learning rate and number of iterations. LN means the num-
ber of leaf nodes for each regression tree in GBDT. Each tree
grows until the number of leaf nodes reaches this value during
the iteration. From the analysis results, the RMSE decreases
as the number of iterations increases, and the RMSE decreases
very slowly if the number of iterations reaches 1000. In par-
ticular, when LN = 20 and learning rate = 0.1 both external
and internal validation have the smallest RMSE. We therefore
adopt the values of 1000, 20 and 0.1, respectively, for the num-
ber of iterations, LN and learning rate during the GBDT-based
training.

Fig. 4. Variation of the fitting results of GBDT with the number of iterations
for different parameters used in test case 1.

TABLE II
COMPARISON OF GBDT AND TRADITIONAL FITTING METHODS IN THE

TEST CASE 1

The comparisons of the GBDT and the traditional linear
and nonlinear regressions, including quadratic polynomial fit-
ting, cubic polynomial fitting and quartic polynomial fitting
for the test case 1 are shown in Fig. 5 and Table II. For ease
of viewing, only the fitting results of 200 samples are dis-
played. It is clear that the residual curve of GBDT is closer
to zero and more stable than other methods. The RMSEs of
the GBDT fitting results for internal and external validation
are 2.19 and 4.10 m, respectively, which are smaller than the
other traditional fitting methods.

Based on the pseudorange errors predicted by GBDT,
the positioning results calculated with the two variations
(i.e., correction-based positioning and multipath/NLOS signals
exclusion or correction-based positioning) are compared with
two conventional positioning methods, i.e., positioning with
standard outlier detection and exclusion (conventional posi-
tioning method one [41]) and positioning with C/N0 and ele-
vation angle-based multipath/NLOS exclusion (conventional
positioning method two). The classification thresholds for con-
ventional positioning method two are that if the C/N0 is greater
than 30 dB and the elevation angle is higher than 15 degrees,
the signal is considered as LOS, with the remaining signals
being multipath/NLOS.

Table III presents the results of the second approach which
detects and excludes or corrects the multipath/NLOS signals.
Here, accuracy of classification is expressed as the percentage
ratio of correctly classified signals to the total within the data
set. A similar approach is used for each category in which



Fig. 5. Comparison of the fitting results in test case 1.

TABLE III
SIGNAL RECEPTION TYPE CLASSIFICATION ACCURACY IN TEST CASE 1

accuracy is measured by the ratio of the quantity of signals
classified correctly to the quantity known to be in that category.

The classification threshold p was set to 5 in this test
case, which means that the samples with absolute pseudor-
ange errors lower than 5 m were considered to be LOS, while
those with absolute pseudorange errors of 5 m or higher, were
considered to be subject to significant multipath and NLOS
effects. An overall classification accuracy of 76% was achieved
by the proposed GBDT-based algorithm.

The positioning results of the two conventional methods,
pseudorange correction and multipath/NLOS signal exclusion
or correction, are depicted in Fig. 6. It can be seen that
the results for the two variations of the algorithm proposed
are closer to the ground truth than the conventional results,
with the pseudorange correction performing better than the
multipath/NLOS exclusion or correction. Table IV compares
the positioning results of the candidate algorithms. It is
shown that the pseudorange corrected based on positioning
delivers 3-D positioning accuracies (RMSE) of 45.14m, an
improvement of 25.95% on conventional positioning method
one and 42.73% on conventional positioning method two.
The improvement with the multipath/NLOS signal exclusion
or correction method is, however, limited because of the
poor classification accuracy of multipath/NLOS signals (i.e.,
76%) and a weaker geometric configuration resulted from the
reduction of the number of visible satellites.

The improvement in positioning using the proposed algo-
rithm is also depicted in Fig. 7. It is shown that with the
conventional positioning results only about 7% to 10% of
the epochs are accurate to within 10 m. The proportion

increases further to above 53% when the pseudorange correc-
tion is applied. In addition, with the application of the method
proposed, the proportion of epochs with a positioning accuracy
in the range of 10–20 m is much higher than that of conven-
tional positioning, and fewer epochs exhibit positioning errors
above 20 m. These results demonstrate the improvements in
positioning accuracy using the two variations of the proposed
method, in particular, the pseudorange correction method.

In order to investigate further the performance of the algo-
rithm proposed, the positioning accuracy compared with the
conventional method one (i.e., the better performing of the two
conventional methods) is analysed according to each epoch
in Table V. This shows that 81% and 79% of the epochs
improved in the 2-D and 3-D positioning results based on
the pseudorange correction applied. Although around 20% of
the epochs deteriorated due to the GBDT prediction errors,
the pseudorange correction is still effective for most of the
epochs. The multipath/NLOS exclusion or correction improves
the positioning accuracy of about 36% of the epochs, while the
positioning accuracy for 58% of the epochs is neither improved
nor worsened when the exclusion or correction is applied. One
possible reason is that some of the multipath/NLOS are not
detected by the algorithm and therefore, lead to no improve-
ment in the positioning accuracy for these epochs. It is also
possible that some epochs may have very few multipath/NLOS
signals, making our algorithm less effective on these epochs.
Only 6% of the epochs got worse with exclusion or cor-
rection applied in the form of the exclusion of the signals
resulting from the incorrect signal reception classification (e.g.,
exclusion of LOS but using multipath/NLOS).

B. Test Case With Wide Road and High Rise Buildings on
One Side

The test case 2 was undertaken in a typical urban envi-
ronment with a wide road but with high rise buildings on
one side. About 20 min of data were collected from each
of two points (P1 and P2) to form part of the training data,
with a frequency of 5 Hz using a NovAtel OEM6 geodetic
receiver on September 20, 2018, see Fig. 8. In addition, on
the same day, four hours of static data with an interval of five
seconds were collected at the SatRef HKSC station in Hong
Kong using a LEICA GR50 geodetic receiver. The training
data set D1 was formed by combining the samples selected
from the data collected in the two urban points and the ref-
erence station. The testing data set D2 was formed from the
5 Hz samples selected from the other 30 min of data collected
in P1. Table VI provides a summary of the data sets used in
test case 2.

The results of a sensitivity analysis of the GBDT-based
algorithm in test case 2 is shown in Fig. 9. It is shown that
the rate of reduction in the RMSE becomes very slow when
the iteration number reaches 400. The minimum RMSE is
achieved for the external and internal validation when LN = 20
and the learning rate = 0.1. Therefore, we adopt the values of
400, 20, and 0.1, respectively, for the number of iterations,
LN and learning rate during the GBDT-based training in this
test case.



Fig. 6. Positioning results in test case 1.

TABLE IV
POSITIONING ACCURACY COMPARISON IN TEST CASE 1

The comparisons of the GBDT and the traditional linear and
nonlinear regressions for the test case 2 are shown in Fig. 10
and Table VII. An example of the first 200 fitting results is dis-
played in Fig. 10. It is clear that the residual curve for GBDT
is closer to zero and more stable than other methods. The
RMSEs for GBDT-based fitting results for internal and exter-
nal validation are 5.96 m and 12.75 m, respectively, which are
significantly smaller than the other traditional fitting methods.

The signal reception classification results used for the posi-
tioning in variation 2 is shown in Table VIII. In particular,
the classification threshold p was set as 50 in this test case,

Fig. 7. Positioning accuracy histogram of test case 1.

with absolute pseudorange errors lower than 50 m consid-
ered as LOS and above 50 m as multipath/NLOS. Since the
multipath/NLOS effect (i.e., especially the NLOS) is more
severe than that of test case 1, a larger threshold is used



TABLE V
ALGORITHM PERFORMANCE EVALUATION WITH PROPORTION OF

EPOCHS IN TEST CASE 1

Fig. 8. Locations of P1 and P2.

to ensure a sufficient number of satellites for the position-
ing after the multipath/NLOS exclusion. Table VIII shows
that the proposed GBDT-based algorithm delivers an over-
all classification accuracy of 91%, with 97% and 73%
for the LOS and multipath/NLOS classification accuracy,
respectively.

The results for the conventional positioning methods, pseu-
dorange correction and multipath/NLOS signal exclusion or
correction, are depicted in Fig. 11 and Table IX. It can be seen
that positioning with pseudorange correction provides a 3-D
RMSE of 23.27 m, while it is more than 80 m for the two
conventional positioning methods, indicating an improvement
of about 71%. Furthermore, the horizontal and vertical posi-
tioning accuracies are improved significantly, by about 76%
and 59%, respectively. The multipath/NLOS signal exclusion
or correction could also provide some degree of improvement
in the positioning results, with about 30% and 4% for the
horizontal and height improvements, respectively.

The positioning accuracy improvement for the proposed
algorithm is also depicted in Fig. 12. It is shown that with the
pseudorange corrections applied, the epochs with a position-
ing accuracy within 30 m have increased significantly, while
the accuracy for the main epochs when using conventional
positioning ranged from 60 to 90 m. Although a less notable
improvement, the multipath/NLOS exclusion-based position-
ing increased the accuracy of the positioning of most epochs
to around 30 to 60 m, better than the conventional positioning
results.

The positioning accuracy by epoch is further analysed
by comparing with conventional method one (which showed

Fig. 9. Variation of the training accuracy of GBDT with the number of
iterations for the different parameters used in test case 2.

Fig. 10. Comparison of the fitting results in test case 2.

a similar performance to the conventional method two) in
Table X. It is shown that the 2-D and 3-D positioning results
improved in 98% and 97% of the epochs, respectively, when
the pseudorange correction was applied, while only around 3%
of the epochs got worse, due to the GBDT prediction errors.
The multipath/NLOS exclusion or correction method, mean-
while, improved the positioning accuracy of about 81% (3-D)
and 91% (2-D) of the epochs, while the positioning accuracy
for 9% (3-D and 2-D) of the epochs did not change when the
exclusion or correction was applied. The fact that there were
fewer epochs that stayed the same in test case 2 (i.e., 9%)
compared to test case 1 (i.e., 58%) was because the quality
of the observed satellite measurements were much poorer in
test case 2 than in test case 1, which means that there were
more severe multipath/NLOS measurements in the test case 2.
It is also validated that tall buildings (i.e., in test case 2) will
result in more severe multipath/NLOS, i.e., larger pseudorange
errors, than short buildings (i.e., in test case 1). The worse



TABLE VI
SUMMARY OF THE TRAINING DATA SET D1 IN TEST CASE 2

Fig. 11. Positioning results in the test case 2.

TABLE VII
COMPARISON OF GBDT AND TRADITIONAL FITTING METHODS IN THE

TEST CASE 2

TABLE VIII
SIGNAL RECEPTION TYPE CLASSIFICATION ACCURACY IN TEST CASE 2

epochs for the 2-D positioning is only 0.4% but with 10% for
3-D positioning due to the height component which is more
affected by the change in pseudorange error and PDOP in
challenging urban areas.

TABLE IX
POSITIONING ACCURACY COMPARISON IN TEST CASE 1

In summary, by analysing the positioning results in two
test cases from the proposed algorithm, we found that vari-
ation 1 (i.e., pseudorange correction) is superior to variation 2
(i.e., multipath/NLOS exclusion or correction), although both
are superior to the conventional methods. This is because the
correction-based method could consider all of the pesudorange
information, which was especially important in conditions
where there were insufficiently healthy satellite observations.



Fig. 12. Positioning accuracy histogram of test case 2.

TABLE X
ALGORITHM PERFORMANCE EVALUATION WITH PROPORTION OF

EPOCHS IN TEST CASE 2

In addition, when correcting the multipath errors, this method
can correct the residual errors caused by inaccurate iono-
spheric and tropospheric correction models. The fact that the
improvement was more marked in test case 2 than test case
1 indicated that our algorithm could have better performance in
environments exhibiting severe pseudorange errors, especially,
therefore, challenging urban areas.

IV. CONCLUSION

We have proposed a GBDT-based machine learning algo-
rithm to improve positioning accuracy in built environments,
compared to conventional positioning methods. Based on
the GBDT-predicted pseudorange errors from the inputs of
elevation angle, C/N0 and pseudorange residual, two varia-
tions of the algorithm (positioning with pseudorange correc-
tion and multipath/NLOS signal exclusion or correction) are
proposed and analysed in two typical urban test scenarios.
The results demonstrate that multipath/NLOS signal exclu-
sion, while improving the results, is sensitive to both the
proximity of a receiver to signal reflectors/blockers and geo-
metrical configuration. On the other hand, the pseudorange

correction approach does not suffer from these limitations
and delivers better performance compared to the conventional
least-squares all-satellites-received solution. The results, for
challenging urban areas with high rise buildings on one side,
show an improvement in the 3-D positioning accuracy (RMSE)
from 81.3 m, with conventional positioning approaches, to
60.8 m when our multipath/NLOS variation is applied; an
improvement of more than 25%. Even more strikingly the cor-
responding results for the pseudorange error correction-based
positioning (compared to the conventional) is from 81.3 m to
23.3 m; an improvement of more than 70%.

The proposed methods, especially the pseudorange correc-
tion one, do not require additional sensors and can avoid
the errors from the use of additional hardware or geospa-
tial information during the labeling phase, thus improving
positioning accuracy with a small amount of calculation and
lower cost. Our ongoing research is developing a framework of
evenly distributed grid of reference points in urban areas, with
the data collected from these reference points used for offline
training. With this approach, users will automatically obtain
the rules online via communication links to nearby reference
points for accurate pseudorange error correction to improve
positioning accuracy. This GBDT based online data train-
ing mechanism, i.e., with frequently updated rules, will also
be developed for real-time and post-processing applications,
including robust ground vehicle and pedestrian location-based
services [42].
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